
NISTIR 6401

COMPUTER-INTEGRATED KNOWLEDGE
SYSTEM (CIKS) NETWORK: REPORT OF
THE 2ND WORKSHOP

Lawrence J. Kaetzel, Editor
K-Systems

Brownsville, MD

Building and Fire Research Laboratory
Gaithersburg, Maryland 20899

United States Department of Commerce
Technology Administration
National Institute of Standards and Technology

NISTIR 6401

COMPUTER-INTEGRATED KNOWLEDGE
SYSTEM (CIKS) NETWORK: REPORT OF
THE 2ND WORKSHOP

Lawrence J. Kaetzel, Editor
K-Systems
Brownsville, MD

December 1999

Building and Fire Research Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899

National Institute of Standards and Technology
William M. Daley, Secretary
Technology Administration
Cheryl L. Shavers, Under Secretary for Technology
National Institute of Standards and Technology
Ray Kammer, Director

43

Jess and Knowledge Sharing Considerations and Issues

Yannis Labrou and Timothy Finin
University of Maryland, Baltimore County

Department of Computer Science and Electrical Engineering

The main task of this project involved converting a decision tree contained in an
engineering decision-support system for bridge coating selection. The system called
BRCOAT (Bridge Coating Expert System) comprised a knowledge base that included
multimedia (pictures), which was originally developed in the Level5 expert system
development tool. The knowledge base was converted to an equivalent system
implemented entirely in Jess1. The larger question is how we can capture the
knowledge present in such a system in a way that is independent of the particular
encoding and implementation. The choice of infrastructure (Level 5 or Jess) is to a
large extent independent of the body of domain knowledge, in our case, knowledge
regarding paint-coating of bridge structures, that our system expresses. Capturing and
expressing this body of knowledge in an implementation-independent manner is a non-
trivial problem that has been a long-standing pursuit of the Artificial Intelligence
community. Being able to do so would allow us to “transfer” this knowledge to
whatever particular implementation is appropriate for the task and circumstances, or,
in other words, to make it sharable between applications. Moreover, updating this
knowledge base would not require a massive overhaul of our implementation(s).

In the type of system we dealt with, knowledge is represented in the form of rules. The
rules themselves make use of terms that have a particular meaning for those familiar
with the domain (such as riveted, or bolted, or salts). Thus, our problem has two
aspects: (1) expressing the rules in a neutral format, and (2) expressing the meaning of
the terms in an application-independant (but probably domain dependent) fashion.
The goal of sharing the content of formally represented knowledge has been at the
center of a research consortium called the Knowledge Sharing Effort or KSE. The
KSE, started in the early 90’s, aimed at developing tools and infrastructure for the
sharing of knowledge both at design-time and run-time. The two results of the KSE
that are most relevant to our goals are KIF (Knowledge Interchange Format) and
Ontolingua.

Knowledge Interchange Format (KIF)

44

Specialized languages have been developed which are particularly good at describing
certain fields. For example, STEP (Standard for the Exchange of Product Model Data)
is an ISO standards project working towards developing mechanisms for the
representation and exchange of a computerized model of a product in a neutral form.
SGML is an example of a language, which is designed to describe the logical structure
of a document. There are special languages for describing workflow, processes,
chemical reactions, etc. It would be nice if there were some expressive languages and
related computer systems which were good at representing a very broad range of
things, like the natural languages, but which do not suffer the problems of imprecision
and ambiguity. Database systems and their languages (e.g., SQL, OQL) offer one
general approach and certain object-oriented languages perhaps offer another.
However, it is difficult or impossible to capture all kinds of information and
knowledge in most of these general languages.

KIF is a particular logic language and was proposed by the KSE as a standard to
describe things within computer systems, e.g. expert systems, databases, intelligent
agents, knowledge bases, etc. Moreover, it was specifically designed to make it useful as
an "interlingua". By this we mean a language which is useful as a mediator in the
translation of other languages. For example, people have built translation programs
that can map a STEP/PDES expression into an equivalent KIF expression and vice
versa. If we had another language for electronic commerce, say MSEC, we could
develop a translator to and from KIF. We would then have a way to translate between
STEP/PDES and MSEC using KIF as an intermediate representation.

So, what are the issues regarding translation between Jess (or CLIPS) and KIF? In
general, providing a complete translation from one language (Jess) to another (KIF)
and vice versa is a hard or even intractable problem because the logics expressed by the
two languages might not be equivalent. The experience of the Stanford researchers
involved with KIF, suggests that it is very unlikely for one to get a general-purpose
translator from KIF into CLIPS. Often though, for practical applications we do not
need a complete translation; translating a sufficiently expressive subset of the source
language to the target language, could be enough for many knowledge bases. We
further discuss this notion of a partial translation when discussing Ontolingua. We are
not aware of any results investigating the other direction of the translation, i.e., from
CLIPS (or Jess) into KIF.

Ontolingua

The question of the meaning of the terms is a more difficult one. Knowledge bases are
designed with a particular view of the world; they have different models of the world

45

in which objects, classes and properties of objects of the world may be conceptualized
differently. For example, the same object (in the real world) may be named differently
or the same term may have different definitions. In addition, knowledge bases may
conceptualize different taxonomies from different perspectives. Therefore, to ensure
accurate sharing of knowledge between any two knowledge bases they must agree on
the model of the world, at least the part of the world about which they are exchanging
information with each other, or to use the proper terminology, they must share a
common ontology. An ontology for a domain is a conceptualization of the world
(objects, qualities, distinctions and relationships, etc. in that domain). Such a
specification should be an objective (i.e., interpretable outside of the knowledge base)
description of the concepts and relationships that the applications use and refer to. A
shared ontology can be in the form of a document or a set of machine interpretable
specifications.

As a concrete representation in a computer, an ontology consists of a specification of
concepts to be used for expressing knowledge including the types and classes of
entities, the kinds of attributes and properties they can have, the relationships and
functions they can participate in and constraints that hold over them. Ontologies are
distinguished from knowledge-bases in general not by their form, but by the role they
play in representing knowledge. Ontologies are typically consensus models for a
particular domain. They place an emphasis on properties that hold in all situations
rather than on one or more particular ones. Consequently, their implementations put
an emphasis on representing generic classes over specific instances. Ontologies do not
tend to change over the course of their use in problem solving, so are well suited to
compiling into programming tools and environments. Since ontologies by their
nature need to support and satisfy a community of users (and developers) there is a
emphasis on collaborative development and on the ability to translate them into
multiple representational formalisms.

Within the context of the KSE, researchers at Stanford’s Knowledge Systems
Laboratory have developed a set of tools and services to support the process of
achieving consensus on common shared ontologies by geographically distributed
groups. These tools are built around Ontolingua, a language designed for describing
ontologies with it, and make use of the world-wide web to enable wide access and
provide users with the ability to publish, browse, create, and edit ontologies stored on
an ontology server. Users can quickly assemble a new ontology from a library of
existing modules, extend the result with new definitions and constraints, check for
logical consistency, and publish the result back to the library. In addition, the KSL
Ontology server is able to translate Ontolingua ontologies into a number of other
representation formalisms such as LOOM, CLASSIC, KIF and CLIPS. Actually,
Ontolingua has two different translations into CLIPS; translating to and from

46

Ontolingua is for the most part equivalent to translating to and from KIF since
Ontolingua is designed on top of KIF. One translation tries to translate into the OO
substrate of CLIPS; this translation is not too good, and is limited largely by the
representational inadequacies of CLIPS's OO system. The other translates the KIF
sentences into a direct CLIPS analogue of the KIF sentences. The conclusion is that
neither of the two methods provides a foolproof translation.

Knowledge Query and Manipulation Language (KQML)

Besides KIF and Ontolingua there was a third crucial component in the KSE approach,
the KQML language (Knowledge Query and Manipulation Language). KQML is a
high-level language and protocol for applications (such as knowledge bases or
information agents) that need to exchange knowledge. This exchange is a level above
the process of transporting bits and bytes; it involves higher-level informational
attitudes about knowledge, such as querying, informing, expression of interest in,
ability to deliver information about, and so on. The idea was for KIF, Ontolingua and
KQML to be used in unison: the represented knowledge would be expressed in KIF (or
translated to and from KIF), the various terms would have meaning captured in
ontologies defined in Ontolingua and KQML would provide the higher-level
messaging protocol for real-time interaction between applications. Of course KIF,
Ontolingua and KQML can be used independently of each other in order to solve
different aspects of the knowledge-sharing problem. So, it does not matter to KQML
whether applications exchange knowledge represented in Jess (or pure CLIPS for that
matter) or KIF.

Knowledge Sharing and the Web

The KSE started at a time when the WWW was not a part of everyday vocabulary. An
important issue is how to make use of these languages and technologies in a web
environment. A recent important development is the emergence of XML (eXtended
Markup Language). XML is an SGML-type language and format that is often
promulgated as the successor to HTML. Technically speaking, XML itself is not a
single markup language but a meta-language that lets users design their own markup
language. A regular markup language defines a way to describe information in a certain
class of documents (e.g. HTML). XML lets you define your own customized markup
languages for many classes of document. Another effort that is of interest is RDF
(Resource Definition Framework). RDF is designed to provide an infrastructure to
support metadata across many web-based activities and is intended to provide a
uniform and interoperable means to exchange the metadata between programs and

47

across the Web. Furthermore, RDF will provide a means for publishing both a human-
readable and a machine-understandable definition of the property set itself. RDF will
use XML as the transfer syntax in order to leverage other tools and code bases being
built around XML.

XML and possibly RDF will allow for ontology definitions that are instantly web-
ready and web-accessible. Does this make Ontolingua obsolete? Ontolingua is an entire
language and set of tools tailored for ontology development; what will probably
happen (actually Stanford KSL researchers are already exploring this direction) is a
translation of Ontolingua specifications into XML. This would make XML the format
of choice for encoding and expressing ontologies. But the features of XML offer other
possibilities, too: the authors are currently working at UMBC on XML encodings for
KIF and KQML and other researchers are experimenting with XML encodings of Jess
rules. The ultimate goal is to use XML as a universal encoding for rules, term
definitions and message exchanges and to remove the barrier of what the human user
understands and what the machine interprets. At least in theory, XML offers the
promise of a continuum where knowledge is dynamically captured and accessed by
both human and machine.

Conclusion

Further work on this project should include knowledge sharing as a primary goal. It
should also focus on XML and the possibilities it offers for expressing the implicit
ontology that the knowledge base encompasses. Also, an XML-encoding of KIF rules
would be an interesting way to represent the knowledge captured in the Jess rules
themselves. Given the lack of tools (and experience) for translation from Jess (or
CLIPS) into KIF, we would rather re-write the knowledge base in KIF than attempt to
translate the Jess rules into KIF rules. A major problem with such a re-write would be
the graphical interface that in the Jess version of the system is defined as Jess rules. But
the appeal of XML is that it would allow us to separate the domain knowledge and the
problem-solving logic (the rules that actually encode the domain knowledge) from the
presentation, which is going to be delivered via XML and a browser.

